Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
J Mol Model ; 30(4): 97, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451367

RESUMO

CONTEXT: Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are two families of persistent organic pollutants that are dangerous as they remain in the atmosphere for long periods and are toxic for humans and animals. They are found all over the world, including the penguins of Antarctica. One of the mechanisms that explains the toxicity of these compounds is related to oxidative stress. The main idea of this theoretical research is to use conceptual density functional theory as a theory of chemical reactivity to analyze the oxidative stress that PCBs and PBDEs can produce. The electron transfer properties as well as the interaction with DNA nitrogenous bases of nine PCBs and ten PBDEs found in Antarctic penguins are investigated. From this study, it can be concluded that compounds with more chlorine or bromine atoms are more oxidizing and produce more oxidative stress. These molecules also interact directly with the nitrogenous bases of DNA, forming hydrogen bonds, and this may be an explanation for the toxicity. Since quinone-type metabolites of PCBs and PBDEs can cause neurotoxicity, examples of quinones are also investigated. Condensed Fukui functions are included to analyze local reactivity. These results are important as the reactivity of these compounds helps to explain the toxicity of PCBs and PBDEs. METHODS: All DFT computations were performed using Gaussian16 at M06-2x/6-311 + g(2d,p) level of theory without symmetry constraints. Electro-donating (ω-) and electro-accepting (ω +) powers were used as global response functions and condensed Fukui functions as local parameters of reactivity.


Assuntos
Poluentes Orgânicos Persistentes , Bifenilos Policlorados , Animais , Humanos , Éteres Difenil Halogenados/toxicidade , Bifenilos Policlorados/toxicidade , Modelos Teóricos , DNA
2.
Sci Total Environ ; 921: 171202, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408669

RESUMO

BACKGROUND: Prenatal and early-life exposure to polybrominated diphenyl ethers (PBDEs) is associated with detrimental and irreversible neurodevelopmental health outcomes during childhood. Breastfeeding may be a child's largest sustained exposure to PBDE- potentially exacerbating their risk for adverse neurodevelopment outcomes. However, breastfeeding has also been associated with positive neurodevelopment. Our study investigates if breastfeeding mitigates or exacerbates the known adverse effects of prenatal exposure to PBDEs and child neurodevelopment. METHODS: Participants included 321 mother-infant dyads from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS), a longitudinal birth cohort in California. PBDE concentrations were measured in maternal serum blood samples collected during pregnancy or at delivery. Using generalized estimated equations (GEE), we estimated associations of PBDE concentrations with children's attention, executive function, and cognitive scores assessed longitudinally between 7 and 12 years of age, stratified by duration of exclusive and complementary breastfeeding. RESULTS: We observed that higher maternal prenatal PBDE concentrations were associated with poorer executive function among children who were complementary breastfed for a shorter duration compared to children breastfed for a longer duration; preservative errors (ß for 10-fold increase in complementary breastfeeding <7 months = -6.6; 95 % Confidence Interval (CI): -11.4, -1.8; ß ≥ 7 months = -5.1; 95 % CI: -10.2, 0.1) and global executive composition (ß for 10-fold increase <7 months = 4.3; 95 % CI: 0.4, 8.2; ß for 10-fold increase ≥7 months = 0.6; 95 % CI: -2.8, 3.9). CONCLUSIONS: Prolonged breastfeeding does not exacerbate but may mitigate some previously observed negative associations of prenatal PBDE exposure and child neurodevelopment.


Assuntos
Éteres Difenil Halogenados , Efeitos Tardios da Exposição Pré-Natal , Criança , Lactente , Feminino , Gravidez , Humanos , Éteres Difenil Halogenados/toxicidade , Aleitamento Materno , Função Executiva , Exposição Materna/efeitos adversos
3.
J Hazard Mater ; 467: 133720, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335606

RESUMO

As long-lived apex predators, marine mammal adults often accumulate alarmingly levels of environmental contaminants. Nevertheless, the accumulation and risks of these contaminants in the critical calf stage of marine mammals remain largely unknown. Here, we investigated the exposure status and health risks of 74 organohalogen contaminants (OHCs) in Indo-Pacific humpback dolphin calves (Sousa chinensis) collected from the Pearl River Estuary (PRE), China, during 2005-2019. Our findings revealed moderate levels of polychlorinated biphenyls (PCBs), medium-high levels of dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs), and the highest levels of polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs) compared to those reported for cetaceans elsewhere. Traditional OHCs like DDTs, PCBs, and PBDEs did not exhibit significant decreasing trends in the dolphin calves despite global restrictions on these compounds, and AHFRs as emerging OHCs showed an increasing trend over the study period. Risk quotients of DDTs, HCHs, PBDEs, and PCBs in most of the dolphin samples were > 1, indicating that humpback dolphin calves may have suffered long-term threats from OHC exposure. The significant correlation observed between the traditional OHC levels and the stranding death number of the dolphin calves suggests these OHCs may impact the survival of this endangered species.


Assuntos
Golfinhos , Bifenilos Policlorados , Animais , Bifenilos Policlorados/análise , Éteres Difenil Halogenados/toxicidade , Monitoramento Ambiental , Hexaclorocicloexano , Ecossistema
4.
J Agric Food Chem ; 72(7): 3741-3754, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340082

RESUMO

Decabromodiphenyl ether (BDE-209) is a widely used brominated flame retardant that can easily detach from materials and enter into feed and foodstuffs, posing a serious risk to human and animal health and food safety of animal origin. However, the immunotoxic effects of BDE-209 on the avian spleen and the exact mechanism of the toxicity remain unknown. Therefore, we established an experimental model of BDE-209-exposed chickens and a positive control model of cyclophosphamide-induced immunosuppression in vivo and treated MDCC-MSB-1 cells and chicken splenic primary lymphocytes with BDE-209 in vitro. The results showed that BDE-209 treatment caused morphological and structural abnormalities in the chicken spleens. Mechanistically, indicators related to oxidative stress, endoplasmic reticulum stress (ERS), autophagy, and apoptosis were significantly altered by BDE-209 exposure in both the spleen and lymphocytes, but the use of the N-acetylcysteine or the 4-phenylbutyric acid significantly reversed these changes. In addition, BDE-209 exposure decreased the spleen antimicrobial peptide and immunoglobulin gene expression. In conclusion, the present research revealed that BDE-209 exposure enhanced lymphocyte autophagy and apoptosis in chicken spleen via the ROS-mediated ERS pathway. This signaling cascade regulatory relationship not only opens up a new avenue for studying BDE-209 immunotoxicity but also provides important insights into preventing BDE-209 hazards to animal health.


Assuntos
Galinhas , Retardadores de Chama , Humanos , Animais , Galinhas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/metabolismo , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/metabolismo , Apoptose , Autofagia , Estresse do Retículo Endoplasmático , Retardadores de Chama/toxicidade
5.
Toxicol Lett ; 394: 11-22, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387762

RESUMO

BACKGROUND: The incidence of endocrine-related cancer, which includes tumors in major endocrine glands such as the breast, thyroid, pituitary, and prostate, has been increasing year by year. Various studies have indicated that brominated flame retardants (BFRs) are neurotoxic, endocrine-toxic, reproductive-toxic, and even carcinogenic. However, the epidemiological relationship between BFR exposure and endocrine-related cancer risk remains unclear. METHODS: We searched the PubMed, Google Scholar, and Web of Science databases for articles evaluating the association between BFR exposure and endocrine-related cancer risk. The odds ratio (OR) and its corresponding 95% confidence interval (95% CI) were used to assess the association. Statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. Begg's test was performed to evaluate the publication bias. RESULTS: We collected 15 studies, including 6 nested case-control and 9 case-control studies, with 3468 cases and 4187 controls. These studies assessed the risk of breast cancer, thyroid cancer, and endocrine-related cancers in relation to BFR levels. Our findings indicate a significant association between BFR exposure in adipose tissue and an increased risk of breast cancer. However, this association was not observed for thyroid cancer. Generally, BFR exposure appears to elevate the risk of endocrine-related cancers, with a notable increase in risk linked to higher levels of BDE-28, a specific polybrominated diphenyl ether congener. CONCLUSIONS: In conclusion, although this meta-analysis has several limitations, our results suggest that BFR exposure is a significant risk factor for breast cancer, and low-brominated BDE-28 exposure could significantly increase the risk of endocrine-related cancers. Further research is essential to clarify the potential causal relationships between BFRs and endocrine-related cancers, and their carcinogenic mechanisms.


Assuntos
Neoplasias da Mama , Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Humanos , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Fatores de Risco , Hidrocarbonetos Bromados/toxicidade
6.
J Hazard Mater ; 466: 133543, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262318

RESUMO

The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Monitoramento Ambiental , Organofosfatos/análise , Água/análise , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Octanóis , Ésteres/toxicidade
7.
Environ Pollut ; 344: 123358, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242302

RESUMO

Marine warming and polybrominated diphenyl ethers (PBDEs) pollution are two of the most concerning environmental problems in recent years. However, the impact of their co-occurrence on marine bivalves and the tolerance of bivalves with different traits remain unknown. In this study, thick shell mussels Mytilus coruscus were divided into two personalities according to individual feeding and byssus growth. The reliability of the classification was validated by respiration, self-organization, and post-stress behavior. Then, the survival rate, hemolymph immunity, and digestive glands oxidase activity of classified mussels were evaluated after 21 days of compound exposure to warming and BDE-47. The results showed that mussels could be divided into proactive and reactive types consistently. Compared to reactive mussels, proactive mussels exhibited some traits, such as faster food recovery, more byssus growth, higher metabolic rate, and more efficient clustering. Both single or combined warming and BDE-47 exposure impacted the individual survival, hemolymph, and antioxidase of mussels. Notably, the negative impacts of BDE-47 were exacerbated by warming. Moreover, proactive mussels displayed better adaptability with higher survival rates along with less damage to hemolymph immunity and antioxidant ability compared to reactive ones when facing environmental challenges. This study highlights potential risks associated with the coexistence of marine warming and PBDEs pollution while demonstrating differential fitness among individuals with distinct personalities.


Assuntos
Éteres Difenil Halogenados , Mytilus , Humanos , Animais , Éteres Difenil Halogenados/toxicidade , Reprodutibilidade dos Testes , Personalidade , Oceanos e Mares
8.
Environ Res ; 244: 117832, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056610

RESUMO

BACKGROUND: Persistent organic pollutants (POPs) are chemicals characterized by their environmental persistence. Evidence suggests that exposure to POPs, which is ubiquitous, is associated with microRNA (miRNA) dysregulation. miRNA are key regulators in many physiological processes. It is thus of public health concern to understand the relationships between POPs and miRNA as related to health outcomes. OBJECTIVES: This systematic review evaluated the relationship between widely recognized, intentionally manufactured, POPs, including per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB]), with miRNA expression in both human and animal studies. METHODS: We used PubMed and Embase to systematically search the literature up to September 29th, 2023. Search results for human and animal studies were included if they incorporated at least one POP of interest in relation to at least one miRNA. Data were synthesized to determine the direction and significance of associations between POPs and miRNA. We utilized ingenuity pathway analysis to review disease pathways for miRNA that were associated with POPs. RESULTS: Our search identified 38 eligible studies: 9 in humans and 29 in model organisms. PFAS were associated with decreased expression of miR-19, miR-193b, and miR-92b, as well as increased expression of miR-128, miR-199a-3p, and miR-26b across species. PCBs were associated with increased expression of miR-15a, miR-1537, miR-21, miR-22-3p, miR-223, miR-30b, and miR-34a, as well as decreased expression of miR-130a and let-7b in both humans and animals. Pathway analysis for POP-associated miRNA identified pathways related to carcinogenesis. DISCUSSION: This is the first systematic review of the association of POPs with miRNA in humans and model organisms. Large-scale prospective human studies are warranted to examine the role of miRNA as mediators between POPs and health outcomes.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Hidrocarbonetos Clorados , MicroRNAs , Praguicidas , Bifenilos Policlorados , Animais , Humanos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Estudos Prospectivos , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Praguicidas/toxicidade , Praguicidas/análise , Fluorocarbonos/toxicidade
9.
J Hazard Mater ; 465: 133228, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141303

RESUMO

The brominated flame retardant decabromodiphenyl ethane (DBDPE) has been extensively used following restrictions on BDE-209 and thus, been frequently detected in aquatic environment. However, information on impact of DBDPE on fish development and the potential mechanisms remains scarce. In present study, developing zebrafish were employed as a study model. Embryos were exposed until 5 d to DBDPE at concentrations of 0, 3, 30, and 300 µg/L, following which the impact on larval development was investigated. DBDPE bioaccumulation and locomotor hyperactivity were observed in developing zebrafish exposed to DBDPE. Transcriptome and bioinformatics analyses indicated that pathways associated with cardiac muscle contraction and retinol metabolism were notably affected. The mechanisms of DBDPE to induce locomotor abnormality were further investigated by analyzing levels of retinol and retinol metabolites, eye and heart histology, heart rates, and ATPase activity. Our results indicate that locomotor hyperactivity observed in larvae exposed to DBDPE results from abnormal heartbeat, which in turn is attributable to inhibition of Na+/K+-ATPase activity. Furthermore, DBDPE did not change larval eye histology and contents of retinoid (retinol, retinal, and retinoic acid). This study provides insight into the mechanisms underlying DBDPE-induced developmental toxicity and highlights the need for addressing the environmental risks for aquatic organisms.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Larva , Vitamina A , Transcriptoma , Bromobenzenos/toxicidade , Éteres Difenil Halogenados/toxicidade , Retardadores de Chama/toxicidade , Adenosina Trifosfatases
10.
Chem Biol Interact ; 388: 110831, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38101597

RESUMO

Polybrominated Diphenyl Ethers (PBDEs) are a major class of brominated flame retardants, and their widespread use has led them to be considered contaminants with emerging concern. PBDEs have been detected in the indoor air, house dust, food, and all environmental compartments. The congener BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) is the most prevalent, and hepatotoxicity, neurotoxicity, immunological changes, endocrine disruption, and genotoxic potential have been related to its exposure. Although the BDE-47 molecular toxicity pathway is directly related to intrinsic apoptotic cell death, the role of autophagy in BDE-47 toxicity remains unclear. In this context, three-dimensional cell culture has emerged as a good strategy for the replacement of animals in toxicological testing. Here, we used HepaRG spheroids cultured in alginate microcapsules to investigate the role of autophagy in BDE-47-mediated hepatotoxicity. We developed mature and functional HepaRG spheroids by culturing them in alginate microcapsules. Histological analysis revealed that HepaRG spheroids formed an extracellular matrix and stored glycogen. No apoptotic and/or necrotic cores were observed. BDE-47 showed concentration- and time-dependent cytotoxicity in HepaRG spheroids. In the early exposure period, BDE-47 initially disrupted mitochondrial activity and increased the formation of acid compartments that promoted the increase in autophagic activity; however, this autophagy was blocked, and long-term exposure to BDE-47 promoted efficient apoptotic cell death through autophagy blockade, as evidenced by an increased number of fragmented/condensed nuclei. Therefore, for the first time, we demonstrated BDE-47 toxicity and its cell pathway induces cell death using a three-dimensional liver cell culture, the HepaRG cell line.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Retardadores de Chama , Animais , Éteres Difenil Halogenados/toxicidade , Cápsulas , Autofagia , Retardadores de Chama/toxicidade
11.
Environ Int ; 183: 108410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160509

RESUMO

As the most widely used polybrominated diphenyl ether, BDE-209 is commonly used in polymer-based commercial and household products. Due to its unique physicochemical properties, BDE-209 is ubiquitous in a variety of environmental compartments and can be exposed to organisms in various ways and cause toxic effects. The present review outlines the current state of knowledge on the occurrence of BDE-209 in the environment, influencing factors, toxicity, and degradation. BDE-209 has been detected in various environmental matrices including air, soil, water, and sediment. Additionally, environmental factors such as organic matter, total suspended particulate, hydrodynamic, wind, and temperature affecting BDE-209 are specifically discussed. Toxicity studies suggest BDE-209 may cause systemic toxic effects on living organisms, reproductive toxicity, embryo-fetal toxicity, genetic toxicity, endocrine toxicity, neurotoxicity, immunotoxicity, and developmental toxicity, or even be carcinogenic. BDE-209 has toxic effects on organisms mainly through epigenetic regulation and induction of oxidative stress. Evidence regarding the degradation of BDE-209, including biodegradation, photodegradation, Fenton degradation, zero-valent iron degradation, chemical oxidative degradation, and microwave radiation degradation is summarized. This review may contribute to assessing the environmental risks of BDE-209 to help develop rational management plans.


Assuntos
Epigênese Genética , Éteres Difenil Halogenados , Éteres Difenil Halogenados/toxicidade , Biodegradação Ambiental , Carcinógenos
12.
Water Res ; 249: 121007, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096726

RESUMO

Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants which continue to receive considerable attention because of their persistence, bioaccumulation, and potential toxicity. Although PBDEs have been restricted and phased out, large amounts of commercial products containing PBDEs are still in use and discarded annually. Consequently, PBDEs added to products can be released into our surrounding environments, particularly in aquatic systems, thus posing great risks to human health. Many studies and reviews have described the possible toxic effects of PBDEs, while few studies have comprehensively summarized and analyzed the global trends of their toxicity assessment. Therefore, this study utilizes bibliometrics to evaluate the worldwide scientific output of PBDE toxicity and analyze the hotspots and future trends of this field. Firstly, the basic information including the most contributing countries/institutions, journals, co-citations, influential authors, and keywords involved in PBDE toxicity assessment will be visualized. Subsequently, the potential toxicity of PBDE exposure to diverse systems, such as endocrine, reproductive, neural, and gastrointestinal tract systems, and related toxic mechanisms will be discussed. Finally, we conclude this review by outlining the current challenges and future perspectives in environmentally relevant PBDE exposure, potential carriers for PBDE transport, the fate of PBDEs in the environment and human bodies, advanced stem cell-derived organoid models for toxicity assessment, and promising omics technologies for obtaining toxic mechanisms. This review is expected to offer systematical insights into PBDE toxicity assessments and facilitate the development of PBDE-based research.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Humanos , Éteres Difenil Halogenados/toxicidade , Retardadores de Chama/toxicidade
13.
Ecotoxicol Environ Saf ; 267: 115615, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890256

RESUMO

Polybrominated diphenyl ether flame retardants are known to have adverse effects on the development of organisms. We investigated the molecular mechanisms associated with the developmental hazards of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in zebrafish, as well as the behavioral and morphological alterations involved, focusing on endoplasmic reticulum stress (ERS), oxidative stress, and apoptosis. Our study revealed behavioral alterations in zebrafish exposed to BDE-47, including impaired motor activity, reduced exploration, and abnormal swimming patterns. In addition, we observed malformations in craniofacial regions and other developmental abnormalities that may be associated with ERS-induced cellular dysfunction. BDE-47 exposure showed apparent changes in ERS, oxidative stress, and apoptosis biomarkers at different developmental stages in zebrafish through gene expression analysis and enzyme activity assays. The study indicated that exposure to BDE-47 results in ERS, as supported by the upregulation of ERS-related genes and increased activity of ERS markers. In addition, oxidative stress-related genes showed different expression patterns, suggesting that oxidative stress is involved in the BDE-47 toxic effects. Moreover, an assessment of apoptotic biomarkers revealed an imbalance in the expression levels of pro- and anti-apoptotic genes, suggesting that BDE-47 exposure activated the apoptotic pathway. These results highlight the complex interactions between ERS, oxidative stress, apoptosis, behavioral alterations, and morphological malformations following BDE-47 exposure in zebrafish. Understanding the mechanisms of toxicity of developmental hazards is essential to elucidate the toxicological effects of environmental contaminants. The knowledge can help develop strategies to mitigate their adverse effects on the health of ecosystems and humans.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Éter , Humanos , Animais , Peixe-Zebra , Ecossistema , Etil-Éteres , Éteres Difenil Halogenados/toxicidade , Estresse do Retículo Endoplasmático , Biomarcadores
14.
Environ Pollut ; 339: 122756, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844865

RESUMO

The development and outcome of inflammatory diseases are associated with genetic and lifestyle factors, which include chemical and nonchemical stressors. Persistent organic pollutants (POPs) are major groups of chemical stressors. For example, dioxin-like polychlorinated biphenyls (PCBs), per- and polyfluoroalkyl substances (PFASs), and polybrominated diphenyl ethers (PBDEs) are closely associated with the incidence of inflammatory diseases. The pathology of environmental chemical-mediated inflammatory diseases is complex and may involve disturbances in multiple organs, including the gut, liver, brain, vascular tissues, and immune systems. Recent studies suggested that diet-derived nutrients (e.g., phytochemicals, vitamins, unsaturated fatty acids, dietary fibers) could modulate environmental insults and affect disease development, progression, and outcome. In this article, mechanisms of environmental pollutant-induced inflammation and cardiometabolic diseases are reviewed, focusing on multi-organ interplays and highlighting recent advances in nutritional strategies to improve the outcome of cardiometabolic diseases associated with environmental exposures. In addition, advanced system biology approaches are discussed, which present unique opportunities to unveil the complex interactions among multiple organs and to fuel the development of precision intervention strategies in exposed individuals.


Assuntos
Doenças Cardiovasculares , Poluentes Ambientais , Bifenilos Policlorados , Humanos , Poluentes Orgânicos Persistentes , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Inflamação/induzido quimicamente , Doenças Cardiovasculares/induzido quimicamente
15.
Environ Res ; 239(Pt 1): 117308, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37813138

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) are intentionally produced persistent organic pollutants (POPs) that are resistant to environmental degradation. Previous in-vitro and in-vivo studies have shown that POPs can induce oxidative stress, which is linked to neurodegenerative diseases, cardiovascular diseases, and cancer. However, findings in epidemiological studies are inconsistent and an evidence synthesis study is lacking to summarize the existing literature and explore research gaps. OBJECTIVE: We evaluated the effects of PFAS, PCBs, OCPs, and PBDEs, on oxidative stress biomarkers in epidemiological studies. METHODS: A literature search was conducted in PubMed, Embase, and Cochrane CENTRAL to identify all published studies related to POPs and oxidative stress up to December 7th, 2022. We included human observational studies reporting at least one exposure to POPs and an oxidative stress biomarker of interest. Random-effects meta-analyses on standardized regression coefficients and effect direction plots with one-tailed sign tests were used for quantitative synthesis. RESULTS: We identified 33 studies on OCPs, 35 on PCBs, 49 on PFAS, and 12 on PBDEs. Meta-analyses revealed significant positive associations of α-HCH with protein carbonyls (0.035 [0.017, 0.054]) and of 4'4-DDE with malondialdehyde (0.121 [0.056, 0.187]), as well as a significant negative association between 2'4-DDE and total antioxidant capacity (TAC) (-0.042 [-0.079, -0.004]), all ß [95%CI]. Sign tests showed a significant positive association between PCBs and malondialdehyde (pone-tailed = 0.03). Additionally, we found significant negative associations of OCPs with acetylcholine esterase (pone-tailed = 0.02) and paraoxonase-1 (pone-tailed = 0.03). However, there were inconsistent associations of OCPs with superoxide dismutase, glutathione peroxidase, and catalase. CONCLUSIONS: Higher levels of OCPs were associated with increased levels of oxidative stress through increased pro-oxidant biomarkers involving protein oxidation, DNA damage, and lipid peroxidation, as well as decreased TAC. These findings have the potential to reveal the underlying mechanisms of POPs toxicity.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Humanos , Antioxidantes , Biomarcadores , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Éteres Difenil Halogenados/toxicidade , Hidrocarbonetos Clorados/toxicidade , Malondialdeído , Estresse Oxidativo , Praguicidas/toxicidade , Bifenilos Policlorados/toxicidade
16.
Environ Sci Pollut Res Int ; 30(51): 111325-111343, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814044

RESUMO

Decabromodiphenyl ether (BDE-209), widely used in various industries for its excellent flame-retardant performance, could be enriched in humans and is closely associated with immune impairment. In addition, immune system is gradually declined and becoming more sensitive to environmental pollutants in the ageing process. Therefore, the immunotoxicity of BDE-209 (4, 40, and 400 mg/kg/day) to middle-aged mice and its recovery and susceptibility was first to be comprehensively investigated in this study. The results showed that BDE-209 exposure could lead to oxidative injury to immune organs (spleen, thymus, and liver), impair humoral (immunoglobulins), cellular (lymphopoiesis), and non-specific immunity, and disturb the expressions of the genes related to Th1/Th2 balance (T helper cells) in the middle-aged mice. In addition, Integrated Biomarker Response (IBR) indicated that BDE-209-induced immune impairment was challenging to self-regulated, and even exacerbated after 21 days of recovery and oxidative injury in immune organs could be the main reason. Furthermore, factorial analysis showed that middle-aged mice exposed to BDE-209 suffered from greater immune impairment than adult mice, and the immune impairment in aged mice is more difficult to be self-repaired than that in adult mice. It can be seen that the aged tend to suffer from BDE-209-induced persistent immune impairment and health threats.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Humanos , Adulto , Camundongos , Animais , Feminino , Pessoa de Meia-Idade , Éteres Difenil Halogenados/toxicidade , Fígado/metabolismo , Baço/metabolismo , Retardadores de Chama/toxicidade
17.
Ecotoxicol Environ Saf ; 266: 115558, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820477

RESUMO

The persistent organic pollutant 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a prevalent congener among polybrominated diphenyl ethers (PBDEs), exhibits potent bioaccumulation and toxicity. Despite extensive research into the adverse effects of BDE-47, its neurotoxicity in sea cucumbers remains unexplored. Given the crucial role of the sea cucumber's nervous system in survival and adaptation, evaluating the impacts of BDE-47 is vital for sustainable aquaculture and consumption. In this study, we employed ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS) to analyze metabolomic changes in neuro-related tissues of Apostichopus japonicus exposed to low (0.1 µg/L), medium (1.0 µg/L), and high (10.0 µg/L) BDE-47 concentrations. We identified significantly changed metabolites in each exposure group (87 in low, 79 in medium, and 102 in high), affecting a variety of physiological processes such as steroid hormone balance, nucleotide metabolism, energy metabolism, neurotransmitter levels, and neuroprotection. In addition, we identified concentration-dependent, common, and some other metabolic responses in the neuro-related tissues. Our findings reveal critical insights into the neurotoxic effects of BDE-47 in sea cucumbers and contribute to risk assessment related to BDE-47 exposure in the sea cucumber industry, paving the way for future neurotoxicological research in invertebrates.


Assuntos
Fenômenos Fisiológicos , Pepinos-do-Mar , Stichopus , Animais , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/metabolismo
18.
Environ Pollut ; 338: 122724, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832780

RESUMO

Decabromodiphenyl ethane (DBDPE) as the most widely used novel brominated flame retardants (NBFRs), has become a ubiquitous emerging pollutant in the environment. However, its toxic effects on vegetable growth during agricultural production have not been reported. In this study, we investigated the response mechanisms of hydroponic lettuce to DBDPE accumulation, antioxidant stress, cell structure damage, and metabolic pathways after exposure to DBDPE. The concentration of DBDPE in the root of lettuce was significantly higher than that in the aboveground part. DBDPE induced oxidative stress on lettuce, which stimulated the defense of the antioxidative system of lettuce cells, and the cell structure produced slight plasma-wall separation. In terms of metabolism, metabolic pathway disorders were caused, which are mainly manifested as inhibiting amino acid biosynthesis and metabolism-related pathways, interfering with the biosyntheses of amino acids, organic acids, fatty acids, carbohydrates, and other substances, and ultimately manifested as decreased total chlorophyll content and root activity. In turn, metabolic regulation alleviated antioxidant stress. The mechanisms of the antioxidative reaction of lettuce to DBDPE were elucidated by IBR, PLS-PM analysis, and molecular docking. Our results provide a theoretical basis and research necessity for the evaluation of emerging pollutants in agricultural production and the safety of vegetables.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Bromobenzenos/análise , Estresse Oxidativo , Poluentes Ambientais/análise , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise
19.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686292

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.


Assuntos
Éteres Difenil Halogenados , Rim , Animais , Feminino , Humanos , Éteres Difenil Halogenados/toxicidade , Adiposidade , Bioacumulação , Leite Humano
20.
Environ Pollut ; 337: 122616, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37757929

RESUMO

Polybrominated diphenyl ether contamination in sediments poses serious threats to human health and ecological safety. Despite the broad application of submerged macrophytes for remediating pollutants, their regulatory influence on bacterial communities in contaminated sediments remains unclear. Herein, we analyzed the effects of decabromodiphenyl ether (BDE-209) and Hydrilla verticillata on sediment bacterial community and function using 16S rRNA gene sequencing and sediment metabolomics. Results showed that BDE-209 significantly inhibited sediment bacterial diversity and metabolic functions. It also enhanced bacterial interactions and altered both the bacterial community and metabolite composition. Uridine and inosine were critical metabolites that positively co-occurred with bacterial taxa inhibited by BDE-209. Notably, planting H. verticillata effectively alleviated the adverse impacts of BDE-209 by reducing its residuals, increasing the total organic carbon, and modifying metabolic profiles. Such mitigation was evidenced by enhancing bacterial diversity, restoring metabolic functions, and attenuating bacterial interactions. However, mitigation effectiveness depended on treatment time. Additionally, propionic acid, palmitic acid, and palmitoleic acid may facilitate the restoration of phylum Proteobacteria and class Planctomycetacia in H. verticillata planted sediment. Together, these findings improve understanding of BDE-209's impacts on aquatic ecosystems and provide valuable insights for ecological restoration using submerged macrophytes.


Assuntos
Bactérias , Ecossistema , Humanos , RNA Ribossômico 16S , Bactérias/genética , Éteres Difenil Halogenados/toxicidade , Sedimentos Geológicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...